Talleres Imágenes y Visión 2025-10
  • Talleres PAID
  • Taller 1: operaciones elementales sobre imágenes
    • Análisis del histograma
    • Operaciones aritméticas
    • Negativo
    • Cuantificación
    • Operaciones lógicas
    • Interpolación
    • Modificación de la paleta de colores
    • Ejercicio de síntesis taller 1
  • Taller 2: operaciones de transformación del histograma
    • Calibración del histograma (o expansión del contraste)
    • Ecualización del histograma
    • Comparación entre diferentes transformaciones del histograma
    • Umbralización simple
    • Umbralización doble
    • Ejercicio de síntesis taller 2
  • Taller 3: Segmentación
    • Segmentación por umbralización
    • Segmentación por crecimiento de regiones
    • Segmentación por agrupación
    • Filtros lineales de detección de contornos
    • Operador de Canny
    • Laplaciano
    • Ejercicio de síntesis taller 3
  • Taller 4: Filtros lineales y no lineales
    • Filtros lineales suavizantes
    • Filtros lineales separables
    • Filtros no lineales
    • Ejercicio de síntesis taller 4
  • Taller 5: Morfología matemática
    • Operadores de dilatación y erosión
    • Gradiente morfológico
    • Operadores de apertura y cierre
    • Etiquetado de objetos
    • Imagen de distancia
    • Esqueleto y adelgazamiento de una imagen
    • Ejercicio de síntesis taller 5
  • Vocabulario
    • Apertura
    • Cierre o clausura
    • Dilatación
    • Elementos estructurantes
    • Erosión
    • Esqueleto, Adelgazamiento y Estrechamiento
    • Falso color
    • Herramienta o elemento estructurante
    • Histograma
    • Imagen binaria
    • Nivel de gris
    • Marcado
    • Morfología matemática
    • Paleta de color
    • Pixel
    • Producto de convolución
    • Pseudo-color
    • Segmentación
    • Transformación del histograma
    • Umbralización del histograma
    • Vecindario y conectividad
    • Coeficiente de Sorensen-Dice
    • Agrupación - Método del codo
  • Imágenes
    • AMOUR
    • ANGIO
    • AQUITAIN
    • BABOON
    • BOUGIES
    • BUREAU
    • BRUIT
    • CARREFOU
    • CHERMANT
    • CIRCUIT
    • CLEF
    • CT
    • DES
    • DES2
    • DES3
    • DES4
    • DESSIN
    • EURO7
    • FILM
    • FISSURE
    • IMPACT
    • LACORNOU
    • MEB
    • MORPHO
    • MUSCLE
    • NOIX
    • OBJECTS
    • QUITO
    • RECT
    • REGLE
    • RONDELLE
    • SCANNER
    • SIC
    • SPOT
    • TORAX
    • TEXT
    • CHEST
  • Ayudas
    • Adición de ruido
    • Adición de ruido uniforme
    • Adición de sombras
    • Aplicación de filtros por convolución
    • Aplicación de filtro Gaussiano
    • Aplicación de filtro promedio
    • Aplicación de filtro sigma
    • Aplicación de operaciones morfológicas
    • Aplicación de ruido Sal y Pimienta
    • Aplicación del Laplaciano
    • Aplicar mapa de color
    • Cálculo de imagen de distancia euclidiana
    • Cálculo del gradiente morfológico
    • Cargar imágenes
    • Crecimiento de regiones
    • Cuantificación de imágenes
    • Detección de componentes conexos
    • Ecualización del histograma
    • Especificación de histogramas
    • Esqueletización (y adelgazamiento)
    • Expansión del histograma
    • Extracción de planos binarios
    • Operaciones aritméticas
    • Operador de Canny
    • Operadores de detección de bordes (Sobel y Prewitt)
    • Redimensionar imágenes
    • Segmentación por K-means
    • Segmentación por súper-pixeles (SLIC)
    • Separabilidad de filtros lineales
    • Umbralización
    • Umbralización doble
    • Umbralización local
    • Visualizar histograma
    • Visualizar imágenes
Powered by GitBook
On this page
  1. Ayudas

Detección de componentes conexos

Es posible etiquetar los componentes de una imagen usando scikit-image. El cálculo de componentes conexos pasa por calcular los pixeles vecinos. Dos pixeles se consideran vecinos si tienen el mismo valor de intensidad y están conectados de acuerdo a un nivel de conectividad (vecinos-4 o vecinos-8).

Dada una imagen con estas características, es posible hallar los componentes conextos de la siguiente manera:

from skimage.measure import label

connected_components = label(imagen, background=0, connectivity=2)

El parámetro opcional background permite seleccionar un valor de intensidad para etiquetar como fondo (etiqueta 0). El parámetro opcional connectivitypermite indicar el tipo de vecindario a considerar. 4-vecindario se expresa con el valor 1, 8-vecindario con el valor 2 (o None).

El resultado es una imagen con tantos valores de intensidad como componentes detectados. Es posible visualizarla con un mapa de color de varios tonos para poder observar los diferentes componentes detectados.

PreviousCuantificación de imágenesNextEcualización del histograma

Last updated 2 months ago