Talleres Imágenes y Visión 2025-10
  • Talleres PAID
  • Taller 1: operaciones elementales sobre imágenes
    • Análisis del histograma
    • Operaciones aritméticas
    • Negativo
    • Cuantificación
    • Operaciones lógicas
    • Interpolación
    • Modificación de la paleta de colores
    • Ejercicio de síntesis taller 1
  • Taller 2: operaciones de transformación del histograma
    • Calibración del histograma (o expansión del contraste)
    • Ecualización del histograma
    • Comparación entre diferentes transformaciones del histograma
    • Umbralización simple
    • Umbralización doble
    • Ejercicio de síntesis taller 2
  • Taller 3: Segmentación
    • Segmentación por umbralización
    • Segmentación por crecimiento de regiones
    • Segmentación por agrupación
    • Filtros lineales de detección de contornos
    • Operador de Canny
    • Laplaciano
    • Ejercicio de síntesis taller 3
  • Taller 4: Filtros lineales y no lineales
    • Filtros lineales suavizantes
    • Filtros lineales separables
    • Filtros no lineales
    • Ejercicio de síntesis taller 4
  • Taller 5: Morfología matemática
    • Operadores de dilatación y erosión
    • Gradiente morfológico
    • Operadores de apertura y cierre
    • Etiquetado de objetos
    • Imagen de distancia
    • Esqueleto y adelgazamiento de una imagen
    • Ejercicio de síntesis taller 5
  • Vocabulario
    • Apertura
    • Cierre o clausura
    • Dilatación
    • Elementos estructurantes
    • Erosión
    • Esqueleto, Adelgazamiento y Estrechamiento
    • Falso color
    • Herramienta o elemento estructurante
    • Histograma
    • Imagen binaria
    • Nivel de gris
    • Marcado
    • Morfología matemática
    • Paleta de color
    • Pixel
    • Producto de convolución
    • Pseudo-color
    • Segmentación
    • Transformación del histograma
    • Umbralización del histograma
    • Vecindario y conectividad
    • Coeficiente de Sorensen-Dice
    • Agrupación - Método del codo
  • Imágenes
    • AMOUR
    • ANGIO
    • AQUITAIN
    • BABOON
    • BOUGIES
    • BUREAU
    • BRUIT
    • CARREFOU
    • CHERMANT
    • CIRCUIT
    • CLEF
    • CT
    • DES
    • DES2
    • DES3
    • DES4
    • DESSIN
    • EURO7
    • FILM
    • FISSURE
    • IMPACT
    • LACORNOU
    • MEB
    • MORPHO
    • MUSCLE
    • NOIX
    • OBJECTS
    • QUITO
    • RECT
    • REGLE
    • RONDELLE
    • SCANNER
    • SIC
    • SPOT
    • TORAX
    • TEXT
    • CHEST
  • Ayudas
    • Adición de ruido
    • Adición de ruido uniforme
    • Adición de sombras
    • Aplicación de filtros por convolución
    • Aplicación de filtro Gaussiano
    • Aplicación de filtro promedio
    • Aplicación de filtro sigma
    • Aplicación de operaciones morfológicas
    • Aplicación de ruido Sal y Pimienta
    • Aplicación del Laplaciano
    • Aplicar mapa de color
    • Cálculo de imagen de distancia euclidiana
    • Cálculo del gradiente morfológico
    • Cargar imágenes
    • Crecimiento de regiones
    • Cuantificación de imágenes
    • Detección de componentes conexos
    • Ecualización del histograma
    • Especificación de histogramas
    • Esqueletización (y adelgazamiento)
    • Expansión del histograma
    • Extracción de planos binarios
    • Operaciones aritméticas
    • Operador de Canny
    • Operadores de detección de bordes (Sobel y Prewitt)
    • Redimensionar imágenes
    • Segmentación por K-means
    • Segmentación por súper-pixeles (SLIC)
    • Separabilidad de filtros lineales
    • Umbralización
    • Umbralización doble
    • Umbralización local
    • Visualizar histograma
    • Visualizar imágenes
Powered by GitBook
On this page
  1. Ayudas

Separabilidad de filtros lineales

PreviousSegmentación por súper-pixeles (SLIC)NextUmbralización

Last updated 2 months ago

Los filtros lineales (como el promedio y el gaussiano) tienen como ventaja el hecho de ser separables, es decir, se pueden realizar con la convolución de dos vectores unidimensionales en lugar de una máscara bidimensional.

Un filtro lineal de tamaño MxN se dice “separable” cuando se puede escribir como el producto de convolución de un filtro Mx1 con un filtro 1xN.

El interés de los filtros separables es que son más rápidos de calcular en su forma separada. Los cálculos del filtro separable se hacen en dos etapas, siguiendo los dos ejes correspondientes. Para un filtro de n filas y m columnas, se comienza por calcular, en cada pixel, la suma de los m pixeles de la misma fila (la máscara centrada en el pixel considerado). Es fácil notar que hay muchos cálculos redundantes: sólo los dos pixeles de los extremos cambian entre dos sumas consecutivas. Nos contentamos entonces con suprimir a la suma precedente el nivel de gris del pixel situado al extremo izquierdo de la máscara y de agregar el nivel de gris del pixel situado al extremo derecho de la máscara. Por lo tanto, el cálculo es exactamente el mismo, independientemente del valor de m (a excepción de la inicialización y del manejo de efectos de borde). Sobre la imagen resultado, se efectúa el mismo procedimiento para las columnas, con una máscara vertical de n pixeles, y se divide el resultado por mxn precalculado una sola vez.0

Filtro promedio de 5x5 visto como la convolución de un filtro de 5x1 con un filtro de 1x5
Filtro gaussiano de 3x3 visto como la convolución de un filtro de 3x1 con un filtro de 1x3
Generalización de un filtro lineal de 5x5 visto como la convolución de un filtro de 5x1 con un filtro de 1x5